本文共 2369 字,大约阅读时间需要 7 分钟。
题目:请说出下面图形中包含多少个三角形?请用一个程序完成计算。
C++版本
1 #include2 3 using namespace std; 4 5 const char NO_POINT = '0'; 6 7 //任意的一条线 8 const char *map[] = { "ad","ab","db","ae","aj","ah","ej","eh","jh","af","ak","ai","fk","fi","ki","ag","ac","gc", 9 "de","df","dg","ef","eg","fg","bj","bk","bg","jk","jg","kg","bh","bi","bc","hi","hc","ic" };10 //共线的点11 const char *line[] = { "adb","aejh","afki","agc","defg","bjkg","bhic" };12 13 //点是否在线上14 int contain( const char *str, char a) {15 int i = 0;16 while (str[i] != '\0') { //注意字符使用单引号,字符串是双引号17 if (str[i] == a)18 return 1;19 i++;20 }21 return 0;22 }23 24 //三个点是否在一条线上函数25 int isInALine(const char *str[], char a, char b, char c) {26 int i ;27 for (i = 0; i < 7; i++) {28 if (contain(str[i], a) && contain(str[i], b) && contain(str[i], c)) {29 return 1;30 }31 }32 return 0;33 }34 35 //两条线的交点函数36 char getCrossPoint(const char *str1, const char *str2) {37 if (*str1 == *str2)38 return *str1;39 if (*str1 == *(str2 + 1))40 return *str1;41 if (*(str1 + 1) == *str2)42 return *(str1 + 1);43 if (*(str1 + 1) == *(str2 + 1))44 return *(str1 + 1);45 return NO_POINT;46 }47 48 //三条线两两必须有交点,并且三条线不能共线才能构成三角形。49 int isTriangle(const char *str1, const char *str2, const char *str3) {50 char Point1, Point2, Point3;51 Point1 = getCrossPoint(str1, str2);52 if (Point1 == NO_POINT)53 return 0;54 Point2 = getCrossPoint(str1, str3);55 if (Point2 == NO_POINT)56 return 0;57 Point3 = getCrossPoint(str2, str3);58 if (Point3 == NO_POINT)59 return 0;60 if (isInALine(line, Point1, Point2, Point3))61 return 0;62 return 1;63 }64 65 int getTriangelCount( const char *str[]) {66 int i, j, k,count=0;67 for (i = 0; i < 36; i++) {68 for (j = i+1; j < 36; j++) {69 for (k = j+1; k < 36; k++) {70 if (isTriangle(str[i], str[j], str[k]))71 count++;72 }73 }74 }75 return count;76 }77 78 int main(int argc, char *argv[]) {79 cout << getTriangelCount(map);80 getchar();81 return 0;82 }
解题思路:
(1)给每个交点做标记,如下:
(2)总共有36条线段,如果三条线段两两之间存在交点,但一条线上(已经包含了三条线交于同一点),则可以构成三角形。如下图所示,最左边的构成三角形,右边两个不构成三角形:
(3)故需要有如下一些子函数:求两条线的交点,三个点是否共线等。
转载地址:http://axlxl.baihongyu.com/